In Silico Study of Rotavirus VP7 Surface Accessible Conserved Regions for Antiviral Drug/Vaccine Design
نویسندگان
چکیده
BACKGROUND Rotaviral diarrhoea kills about half a million children annually in developing countries and accounts for one third of diarrhea related hospitalizations. Drugs and vaccines against the rotavirus are handicapped, as in all viral diseases, by the rapid mutational changes that take place in the DNA and protein sequences rendering most of these ineffective. As of now only two vaccines are licensed and approved by the WHO (World Health Organization), but display reduced efficiencies in the underdeveloped countries where the disease is more prevalent. We approached this issue by trying to identify regions of surface exposed conserved segments on the surface glycoproteins of the virion, which may then be targeted by specific peptide vaccines. We had developed a bioinformatics protocol for these kinds of problems with reference to the influenza neuraminidase protein, which we have refined and expanded to analyze the rotavirus issue. RESULTS Our analysis of 433 VP7 (Viral Protein 7 from rotavirus) surface protein sequences across 17 subtypes encompassing mammalian hosts using a 20D Graphical Representation and Numerical Characterization method, identified four possible highly conserved peptide segments. Solvent accessibility prediction servers were used to identify that these are predominantly surface situated. These regions analyzed through selected epitope prediction servers for their epitopic properties towards possible T-cell and B-cell activation showed good results as epitopic candidates (only dry lab confirmation). CONCLUSIONS The main reasons for the development of alternative vaccine strategies for the rotavirus are the failure of current vaccines and high production costs that inhibit their application in developing countries. We expect that it would be possible to use the protein surface exposed regions identified in our study as targets for peptide vaccines and drug designs for stable immunity against divergent strains of the rotavirus. Though this study is fully dependent on computational prediction algorithms, it provides a platform for wet lab experiments.
منابع مشابه
Longitudinal Surveillance of Porcine Rotavirus B Strains from the United States and Canada and In Silico Identification of Antigenically Important Sites
Rotavirus B (RVB) is an important swine pathogen, but control and prevention strategies are limited without an available vaccine. To develop a subunit RVB vaccine with maximal effect, we characterized the amino acid sequence variability and predicted antigenicity of RVB viral protein 7 (VP7), a major neutralizing antibody target, from clinically infected pigs in the United States and Canada. We...
متن کاملCloning of Rota Virus Outer Capsid Protein (VP7) Gene into the pGEM Vector
Background and Aims: In humans the group A rotaviruses are associated with endemic diarrhea in children under the age of 5, leading to approximately 800,000 deaths every year. Introduction of rotavirus vaccines into childhood immunization programs can contribute to substantial reduction in mortality from rotavirus gastroenteritis in developing countries and virtually eliminating hospitalization...
متن کاملSubunit Vaccine Preparation of Bovine Rotavirus and Its Efficacy in Mice
Background: Rotaviruses (RV) are important viral diarrheal agents in calves. Vaccination is an optimum measure to prevent bovine rotaviruses (BRV) infection. However, little research on BRV VP7 vaccine has been done and currently there is no BRV vaccine. Objective: To prepare a subunit vaccine of BRV and investigate its efficacy. Methods: Total RNA was extracted from MA104 cells infected with b...
متن کاملIn silico Analysis of Pasteurella multocida PlpE Protein Epitopes As Novel Subunit Vaccine Candidates
Background: Pasteurella multocida is a Gram-negative, non-motile, non-spore forming, and aerobic/anaerobic cocobacillus known as the causative agent of human and animal diseases. Humans can often be affected by cat scratch or bite, which may lead to soft tissue infections and in rare cases to bacteremia and septicemia. Commercial vaccines against this agent include inactivated, live attenuated,...
متن کاملOprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study
Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...
متن کامل